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Abstract— We propose an actuator mechanism to enable and
improve scalable control of bidding based networks. The mech-
anism is a bid randomization strategy referred to as Heisenberg
bidding, which is used to modify the effective plant gain of a
system involving a large number of similar objects distributed
via an auction exchange. The bid randomization mechanism is
used in a time-varying model-reference adaptive controller and
applied to a problem of satisfying traffic commitments in the
content network of a major web portal.

I. INTRODUCTION

The explosive growth of networks on Internet has made
the demand for highly scalable algorithms for robust and
adaptive optimization and control greater than ever before.
While the networks may represent vastly different systems
e.g. display advertising networks, content delivery networks,
social networks, shopping networks (Amazon, Netflix, etc.);
they all define allocation optimization problems that are very
high-dimensional, dynamic, and subject to tight response
time requirements on allocation decisions.

It is popular to use an auction exchange with decentralized
bidding strategies to solve the above type of problems.
However, while this potentially leads to a scalable solution,
it introduces challenges of a different nature. Indeed, it leads
to discontinuous input-output relationships.

The Heisenberg-bidding based control method [1] intro-
duced in this paper is a decentralized algorithm utilizing bid
randomization implemented in an auction exchange. Each
bidding agent relies only on measurement data related to
itself. Related work and practical challenges in the area of
ad and content optimization are described in [2], [3], [4].

The paper is organized as follows. A high-level overview
of the system is provided in Section II. Thereafter, in
Section III Heisenberg bidding is introduced. The control
problem is defined in Section IV and a model of the plant
is presented in Section V. Section VI derives one possible
control algorithm making use of Heisenberg bidding. Some
simulation results are shown in Section VII and some con-
cluding remarks given in Section VIII.

II. OVERVIEW

One possible implementation of Heisenberg bidding based
control is shown in Figure 1. The diagram indicates how the
key components of the algorithm are connected, and how
an add-on component to support exploration & exploitation
(not covered in this paper) can be introduced [5]. Without
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Fig. 1. Block diagram of Heisenberg bidding based Control.

loss of generality we assume the objects to allocate are “im-
pressions”, e.g. display ads, content promotions, or product
recommendations. The impressions are distributed via an
auction exchange (Market Clearing in the block diagram)
in real-time when an Internet user loads a web page and
a decision is made which ad, content promotion, or product
recommendation to display. For each available impression the
auction exchange receives bids from all interested bidders,
and a market clearing takes place to select which bidder is
awarded the impression. Only the market clearing component
handles information from multiple (all) bidders. All other
components appear once per bidder and are bidder centric
with no information exchange with other bidders.

The control component for each bidder is fed reference and
feedback data, consisting of a desired rate of impressions
(or clicks, revenue, etc.) per time unit and an observed
number of impressions (or clicks, revenue, etc.) per sample
interval. This information is used to calculate a bid price
up(t) € R and a bid uncertainty w,,(t) € R adjustment. The
price adjustment is the primary control lever, but is assisted
by the uncertainty adjustment to modify the effective plant
gain as needed. For example, it reduces the plant gain at
discontinuities where the gain otherwise is co, and increases
the plant gain in intervals where the gain otherwise is zero.

Again, exploration and exploitation is outside the scope
of this paper, but would otherwise produce outputs that are
combined with u,(¢) and u,(t). In the sequel we assume
exactly wu,(t) and u,(t) are fed to Heisenberg Perturbation
in which a perturbed, so called, final bid price is generated
by random draw. The final bid price is used in a standard
market clearing in which the bidder submitting the highest
bid price is awarded the impression.

The random draw and the market clearing takes place once
per auction, while the calculation of w,(t) and w,,(t) typically
happen only in discrete time.

III. HEISENBERG BIDDING

The idea of Heisenberg bidding was first published in [6].
It introduces into auctions an artificial analogue of the
quantum mechanical concepts of uncertainty principle and



tunneling. Indeed, before clearing the market Heisenberg
bidding randomly perturbs each submitted nominal bid price
u, based on a submitted bid uncertainty u,, to generate a final
bid price B used in the market clearing. Heisenberg bidding
can be implemented with other probability distributions, but
in this paper it is defined by B ~ Gamma (o, §) where
a > 0 and B > 0 are the shape and inverse scale parameters
of the Gamma distribution, and where we let a = 1/u?
and 8 = 1/(upu?). A well-known fact from the statistics
literature is that E(B) = /S and Var(B) = «//3%, hence

1
E(B) = uﬁ“p“i = U

1 2)2 2,2
Var (B) = U—Q(upuu) = uyuy,

The price-volume relationship for a bidder refers to the
relationship between the expected awarded impression vol-
ume and the bid price u,, for a fixed value of bid uncertainty
u,,. Figure 2 illustrates the concept of price-volume rela-
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Fig. 2. Artificial price-volume curves for three different values of w,,.
tionship for an artificially constructed competitive landscape.
The bidder is interested in impressions from 22 different
segments and the highest competing bid price on each
segment is reflected by a step in the price-volume curve. The
height of each step corresponds to the available inventory
volume for the corresponding inventory segment. Actually
constructing price-volume curves for bidders in a large and
highly segmented network requires centralized information
and is computationally expensive. It is therefore rarely done
in practice. However, the nature of price-volume curves is
fundamental and of great importance. The left plot shows
the price-volume relationship when no Heisenberg bidding is
used, and the right plot shows the price-volume relationship
for two different non-zero values of wu,,.

A significant value of Heisenberg bidding is that u, >
0 renders the otherwise discontinuous price-volume curve
smooth. This opens up for the possibility to predict the
volume locally around some operating point and enables an
algorithm designer to make use of extensive mathematical
results available only for smooth systems. It follows that
Heisenberg bidding may enable efficient non-cooperative
bidding strategies that enhance learning performance and
scalability. Of greatest relevance to this paper and exploited
in Section VI is that uw, > 0 reduces the effective plant
gain at steps and increases the effective plant gain along
plateaus, where the plant gain otherwise would be co and 0,
respectively.

IV. PROBLEM FORMULATION

Consider a network of bidders competing over impres-
sions on Internet. The impressions represent showing of
e.g. display ads or content promotions. Each bidder may
be interested only in some segments of the available im-
pressions, where an impression’s segment is defined by user
characteristics (age, gender, geographic location, interests,
frequency, etc.), web site and content properties (site-slot
location and content category), and/or time. Moreover, a bid-
der may submit different bids for impressions from different
segments.

The control objective is to determine the proper bids for
one of the bidders (referred to as our bidder) such that
the number of impressions awarded to this bidder tracks
a desired reference rate u.(t). The control algorithm must
handle noisy data related to e.g. stochastic traffic, and a
dynamic competitive landscape related to competing bidders
entering or leaving the network and competing bids changing
over time. Last but not least, the control algorithm must
handle seasonal patterns in traffic and discontinuous rela-
tionships between bid price and awarded impression volume.
The reference signal u.(t) is defined without taking supply
seasonality into account, but the controller is expected to
distribute the awarded number of impressions according to
the seasonality.

V. PLANT MODEL

The plant as perceived by each bidder has the control
input signals u,(¢) and u, (t) representing the bid price and
bid uncertainty used for the bidder at time . The plant
output signal is denoted y(¢) and represents a measured rate
of awarded impressions ny(t — A)/A, where ny(t) is the
number of impressions awarded in the interval [¢,¢ + A],
where A is the sampling time.

The exogenous input signals consists of all competing
bids, the arrival process of impression requests, and the
reference signal. There may be a very large number of
competing bids, but assume each bidder submits only one
bid price and bid uncertainty per segment 7 = 1,...,n.

Let Nyt ;(t) denote the expected arrival of impression
requests on segment j in the interval time [t,¢ + A). Our
bidder will be awarded some or all of Ny, ;(t) depending
on the relationship between u,(t), w,(t), competing bids,
and the random draws in Heisenberg Perturbation.

If the highest competing bid price on segment j at time ¢
is given by 0;(15), then the number of impressions awarded
to our bidder on segment j is a Binomial random number
given by ny ;(t) ~ Binomial( Ny ;(t), Prob(B > 05 (t))).

Given a large value of Ny, ;(t) the actual allocation
ny ;(t) will be very close to the expected value E (nr ;(t)) =
Niot,j(t)Prob (B > 9;(15)) The total number of impressions
ny(t) awarded to our bidder is the sum of impressions
awarded in each segment; i.e., ny(t) = E;Zl nyr;(t).

In applications such as online advertising and content
distribution Nyo ;(f) is stochastic and time-varying. An
approximation that works well for the purpose of control
design and that we adopt is that the base-level volume is



lognormal, and that the dominant time-varying effect is a 24
hour seasonality. In particular, we assume.

Nooo i(t) = . in (27 i (27 e(t)
tot,j (t) = Np,j (1 + B1sin o1 + ¢1 ) + Bg sin o + oo e ()

where €(t) ~ N(0, sz), and where the various parameters
are chosen so that Ny ;(t) > 0 for all ¢. The two harmonics
in the above model may be interpreted as a truncated Fourier
series expansion of some arbitrary 24 hour periodic function.
In practice, two harmonics is considered capturing Internet
traffic seasonality well.

Figure 3 provides an example of impression volume over
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Fig. 3. Example of impression time series data generated according to (1)
with model parameters No ; = 106, 81 = 0.63, ¢1 = 2.76, B2 = 0.26,
¢2 = 0.39, and 0; = 0.1.

time. The example shows the effect of the two-harmonic
seasonal model, and the stochastic impression volume.

VI. CONTROL

In this section we illustrate how adaptive feedback control
together with Heisenberg bidding can be used for decentral-
ized control of a network of bidders. Without Heisenberg
bidding, which is used to shape the plant gain, stability
and robustness would typically require a very conservative
and slow controller compromising the performance. Limited
space prohibit us from discussing stability, robustness, and
response to load or measurement noise.

A. Preliminary Price Control Design

To better understand the ideal dynamics of the main
control loop, consider first the simplified linear (but periodic)
plant model defined by y(t) = K, (1+¢g(t))u,(t—A,), where
K, > 0 is a constant plant gain, A, > 0 is the plant delay,
and g(t+T) = g(t) > —1 for all t and some 7.

The objective is to regulate the plant so that y(¢) tracks
ii.(t) on average sufficiently fast and with smallest possible
variations in u,(t). To track @.(t) on average means an error
feedback controller does not need to use . (t) directly as the
reference input signal, but may use a pre-filtered version of
the signal given by u.(t) = (1 + g(t))u.(¢).

The error feedback controller is implemented by means of
a Pl-controller [7] defined by

up(t) = K. <e(t)+£ /Ote(T)dT>,

where e(t) = u.(t) — y(t).
The closed loop control system is illustrated as a block
diagram in Figure 4.
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Fig. 4. Closed loop system with the simplified 7 -periodic linear plant.

A state space representation of the controller is given by

da:l - 1
e fe(t) 2

up(t) = chxl(t)—&—Kce(t). (3)

Decompose the plant in a time-invariant and a time-
varying component as

y(t) Kpup(t — Ap)

y(t) = (1+g()y(t).
Consider first the time-invariant component y(t) =
Kpup(t — Ap). Its Laplace transform is Y(s) =

K,e=*2rU,(s) and a first order Padé approximation of the

transfer function K e~ %2 is given by
P T
1+ sA,/2

which can be expressed in observable canonical state-space
form as

dno 2K,
- = A, xa(t) + A, up(t) 4)
y(t) = wa(t) — Kpuy(t). 5

Adjoining the dynamics of controller (2)-(3) and of the time-
invariant part of the plant (4)-(5) yields

d:cl 1
L = et
o T e(t)
dxo 4K K, 2 4K K,
i A t) — —xo(t t
o A, z1(1) Apxz()+ A, e(t)
g(t) = —K.Kpxi(t)+ za2(t) — K Kpe(t)
This can be written in matrix form as
d
d—f = Ax(t) + Be(t)
g(t) = Cxz(t)+ De(t)
where A, B,C, and D are given by
0 0 =
A = 4K K, 5 , B = IK. K, |
Ap A, Ap
Cc = [ -K.K, 1 ] , D = -K.K,.

Next introduce the time-varying parts of the system dy-
namics, close the loop, and consider e(t) = u.(t) — y(t) the
output of interest.

et) = (14g@)uct)—(1+g@)y(t)
= (L+g(0)(uc(t) — Ca(t) + KcKpe(t))



Assume K.K,(1 + g(t)) # 1. Then rearrange this equation
so that e(t) appears alone and only on the left hand side of
the equation

1+g(¢t)
1 - K.Kp(1+g(1))
g(t)(uc(t) — Cx(t))

e(t) (ue(t) — Cu(t))

where

1+ g(t)
1 - K:Kp(1+g(1))

g(t)

It follows that the closed-loop dynamics is described by

‘(%’ = Ax(t) + By(t)(ue(t) — Cx(t))
= (A—g(t)BO)x(t) + g(t) Buc(t)
e(t) = g(t)(uc(t) — Ca(t)

or equivalently, by

W= AW + B ©
) = C((t) + Do) @
where
Aty = A-gBC, B(t) = §(t)B,
oW = —gno, D) = g

It is straight forward to show that (6)-(7) has the unique
equilibrium solution

1

S [ KCQKP } U

It is not immediately clear under what conditions the

equilibrium solution is stable. For example, for linear time-

varying systems, uniform asymptotic stability cannot be

characterized by the location of the eigenvalues of A(t) [8];

i.e., for stability it is not sufficient that the eigenvalues for all

t lie in the open left-half plane. The evaluation of stability
and robustness is outside the scope of this paper.

B. Adaptive Heisenberg Bidding Based Design

Now consider the realistic and discontinuities plant model
discussed in Section V and assume 7; is chosen much larger
than A,. The dynamics of the controller then dominates the
dynamics of the plant and we may approximate the plant by
a static relationship (set A, = 0). It follows that the input-
output relationship of the plant is given by

y(t) = (14 g(0)f (up(t), uu(t)), ®)

where ¢(t) is a T-periodic and slowly varying function sat-
isfying g(t) > —1 and T > T;; and where the properties of
f(up, uy) is discussed in detail in section V (and illustrated
in Figure 2/Section III).

Let us again consider a standard PI-controller for the
primary control loop.

d 1
= = () ©)
up(t) = Keax(t)+ Kee(t) (10)

The plant model (8) can be linearized around any operating
point u, and u, > 0. Treating the intercept term in the
linearization as a load disturbance (and ignoring it), the loop
transfer dynamics is

y(t) = (1+9(t)Kpuy(t)
= (1+g(t)KKy(x(t) + e(t))

Proceeding as in Section VI-A (but under the assumption
A, = 0), the control error is given by

et) = (1+g(1)uc(t) —y(t)
= (149(1) (ac(t) = KcKpz(t) = KcKpe(t))
(11)

Isolating e(?) on the left-hand side yields

KK+ () L
) = TYRK{I+90) <x“”KcKp“0(“)
1

= 40 (~a() + )

where

P & A EYI0)
1+ K Kp(1+4g(t))

Combining the controller dynamics (9)-(10) and the expres-

sion for the control error (11) results in the closed loop
dynamics

12)

dv §(t) 1
-4 (f”(f)*KcKp“c“))
bl = KKyt g(1) ((1g<t>>x(t>+[§f§§puc<t>)

where g(t +T) = g(t) and §(t +T) = §(t). We obtain the
following linear periodic system

dx

o = Az + B(t)uc(t) (13)
y(t) = C@)z(t) + D(t)uc(t) (14)
where
_ 9@
Aw = -5
_ 9@
B0 = 7R.E,
Clt) = K:Kp(1+g(t))(1-g(t)
D) = (1+g(t)g)

The problem now is that K, is unknown, dependent on
up and u,, and may vary over time as the competitive
landscape changes. We opt to handle this by means of a
model-reference adaptive controller implemented using the



MIT rule [9], where the adaptive controller adjusts K. The
desired closed-loop response is specified by a model whose
output is ¥,,,. Furthermore, e, is the error between the output
y of the closed-loop system and the desired closed-loop
response Y,; i.e., em(t) = y(t) — ym(t).

With the MIT rule K. is adjusted gradually to minimize
the loss function e2,/2. This is achieved by incremental
changes of K. along the negative gradient of the loss
function; i.e., dK./dt = —ve,0ep, /0K, for some carefully
chosen value of ~.

Suppose next that the controller by means of proper
choices of T; and K, is much faster than A, B, C, and D.
We can then approximate the dynamics at each time point ¢
(in the near future) as time-invariant and transform the closed
loop dynamics into Laplace domain pretending A, B, C, and
D are independent of time; i.e.,

= (C)(s— A1) B(t) + D(t)) tic(s)

([ KcKy(1+g(1)(1 —g(t)g(t)
(s+39)/T)Ti KKy

= 1+ g(®)a0) (19’(“) + 1) Uu(s)

sT; + g(t
Using (12) we can rewrite this as

K Kp(1+g(1)*(sTi + 1) 7

YO = AT R0+ 9(0) + KoKy (1 g@) )

Let the desired dynamics be defined by

_ Km(l + g(t))Q(STi + 1) =
Ynls) = 0T K0+ 90) + K1+ 900 o)

5)

where K, is a design parameter. By adjusting the controller
gain K. such that K K, = K,,, then Y (s) = Y;,,(s).

The adaptation error is defined by E,,,(s) = Y (s) =Y (s),
and the partial derivative of E,,(s) used in the adaptation can
easily be shown to be

0E77L
OK.

Kp(1+g(t)*(sTi +1)sTh .

(sTi(1 + K Kp(1+ g(1))) + KKp(1 + g(t)))*
This formula cannot be used directly since K, is un-
known. An approximation is therefore necessary. One such

approximation that we shall use is K.K, ~ K, Then
K, ~ K,,/K. and we have 0F,, /0K, = Z(s)/K_., where

gm(t)* (sTy +1)sT; -
A N ¢ R () E
) = (1 0(0)

1+ Kp(1+9(t))
The MIT rule can now be expressed as
dK. z(t)
= — m t
dt vem() 5
Before we assemble the derived formulas for updating
K., let us propose how to update the uncertainty bid w,,(t).

+ 01+ g(t))é(t)> Ue(s)

Uc(s)

The idea is to shape the plant gain as needed, and the need
is present near discontinuities in the price-volume curve to
ensure there exists a solution to the control problem, and
along plateaus (K, ~ 0) to avoid the adaptive controller
ramping up the controller gain K, to dangerous values that
would be damaging if the plateau suddenly ends with a
sudden step.

A simple scheme is to establish a one-to-one relationship
G, between u,(t) and K.(t) defined by design parame-
ters u) and KO as follows: u,(t) = G, (K.(t)), where
Gu (Ko(t) = ud + K, (K.(t) — K2)*.

The results so far are illustrated in Figure 5.
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Fig. 5. Block diagram of the derived adaptive controller implemented in
the closed loop system.

To implement each module of the block diagram we need
state-space representations of G, : 4. — Y, and G : 4. —
z. It is straight forward (but somewhat tedious) to obtain

dxm _ gm(t) -
o = g wm® ()
(4 g()gn )1~ gn ()
ym(t) = T, mm(t)
+(1 4 g(t))Gm () uc(t)
and
o ~2pl) _ialn 1]
a { 1 0 }mz(t)Jr[O}uc(t)
A= g,;i)? [ B _ngi;)Q }fz(t)+57;§i)2ac(t)

The continuous-time adaptive controller must be discretized
in practical implementations, but given the above state-space
representations that is a trivial exercise.

VII. SIMULATION RESULTS

A slight variation of the algorithm developed in this paper
is implemented and is being rolled out on www.aol.com, a
major web portal, as part of the proprietary ContentLearn™
system [10]. It is used to satisfy sponsorship commitments
where Aol has agreed to drive a certain amount of traffic
to specific sites hosting advertisement. This is accomplished
by promoting content (not advertisement) from the sponsored
site in just the right amount on the high traffic home portal.
By means of feedback control the content promotions are
shown to the number of users that is required for the traffic
to the sponsored landing page to reach the commitment. The



goal in this configuration is to pace the click stream, not
impression stream as assumed in this paper. However, it is
straight-forward to generalize the algorithm in Section VI to
the case of click volume control.

To appreciate the basic behavior of Heisenberg bidding
based control we limit our testing in this paper on simulation
results. Suppose the expected daily available impression
volume and the competitive landscape is given by the price-
volume curve in Figure 2. The competitive landscape is
assumed to be static throughout the scenario, but the supply
of impressions is stochastic and obeys the seasonality model

. (2wt . [ 4mt
g(t) 0.63 sin < o + 2.76) + 0.26 sin ( o1 + 0.39>
which is a good approximation of Internet traffic in the US.
Assume the hourly rate of available impression volume at
time ¢ is Niop ;(t) = &?Zly (1+ g(t)) e<® where Ngf;-lly is
the expected daily available impression volume in segment
j» and €(t) ~ N(0,0.1%).
Suppose our bidder is subject to the daily delivery goal:

' 450,000 if 0 <t<48
aeily (t) 2,450,000 if48 <t <96
1,450,000 if 96 <t < 144

which implies that the reference signal .. (t) = ud%"¥(t)/24.

The controller derived in Section VI-B and illustrated in
Figure 5 is now used to solve this problem, but with three
modification. First, the output y is filtered as follows before
being fed to the controller

Yi(s) !

1+ STf + (STf)2/2

Y(s)

Next, the plant and controller are discretized with a sampling
time of A = 1/12 hours, and finally, the plant is subject to
a delay of A, = A.

The following parameter values are used: Ty = 0.0938,
T; = 0.3750, K,,, = 0.5, v = 10721, K.(0) = 8 -1077,
u,(0) = 0.005, u = 0.1, K, = 10°, and K0 =8-107".

The closed loop result is shown

in Figure 6. The red

0 80
Time (hr)

Fig. 6. Closed loop result demonstrating the step response of the proposed
controller. The top and middle plots show the marginal and cumulative track-
ing performance, and the bottom plot shows u,, (center curve) and a 95% bid
interval defined by the bid distribution B ~ Gamma(1/(u2),1/(upu?)).

markers in the top plot display the number of awarded

impressions in each sampling interval while the black curve
shows the desired number of impressions per sample; i.e.,
uc(t)A = @.(t)(1 + g(t))A. The middle plot shows the
information in the first plot cumulatively. The bottom plot
encodes bid price u, and bid uncertainty w,. The middle
curve shows u, while the band defined by the outer two
curves define a 95% bid interval defined by the bid distribu-
tion B ~ Gamma (1/(u2),1/(upu?)).

Note how rapidly the controller responds to step changes
in the reference signal and how robustly it handles season-
ality and the stochastic element of the Internet traffic.

VIII. CONCLUDING REMARKS

We have proposed an approach to control design for agents
in a network of bidders, and illustrated the approach with
a model-reference adaptive controller designed to regulate
Internet traffic. The underlying approach is based on bid
randomization to make efficient and robust control of real-
world auction networks possible. Indeed, solutions available
in the literature are based on assumptions that are invalid
in practice, and violations of these assumptions typically
destroy possible optimality (sometimes dramatically).

An added benefit of the proposed bid randomization is that
it turns the system tractable for mathematical analysis using
techniques only available for smooth systems. This in itself
is a major advantage since it expands on the set of tools that
can be applied in future control designs.

The results of this paper are only a first step in the uti-
lization of the proposed bid randomization. Many interesting
topics for further studies exist. They relate to designing other
controllers, analysing robustness and sensitivity, establishing
conditions for stability, determining criteria indicating the
onset of limit cycles or chaos.
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